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For & depth dependent reforence speed, c(z), we cam no lomger invert

the integral equation exactly. However, we cam write down an asymptotic
» high frequency approximation for the kernmel of the integral equation and an E

ssymptotic solution for the perturbation. The computer implementation of
this result is designed along the same lines as the code for the constant
background case. In tests of processing time, we find that, st worst, the
total processing time for this algorithm with depth dependent background
soundspeed is about the same as for a comparsbly programmed k-f algorithm
with comstant background. By worst we mean that we choose the aspect ratio
1 == the number of traces divided by the number of points per trace -- to be
optimal for the k-f algorithm, We present examples whick demonstrate the
method implemented as a migration technique and compare with the spplication
of alternative migration algorithms. The examples we chose were omes in

which the objective is to image the flanks of a salt dome.
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ABSTRACT

_,__—«,7110 purpose of this paper is to descride an exteasion of the

multidimensionl Born inversion techmique [Cohen and Bleistein, 1979a] for
acoustic waves. In that earlier work, a perturbation ia reference
soundspeed was determined by sssuming that the referemce or backgrouad speed
was comstant. In this extemsion, we allow the referemce speed to bde a
function of the depth varisble, z, but still require that it be independent
of the transverse variables. The output of this method is s high frequescy

bandlimited reflectivity fumction of the subsurface. The reflectivity '

function is am array of bamdlimited singular functions scaled by the sormsl

reflection stremgth. Each singular function is a Dirac delta fumction of a
scalar arzgument which measures distance normal to a reflecting interface.
Thus, the reflectivity funmction is an indicator map of subsurface reflectors
which is equivaleat to the map produced by migration. In addition to the ‘
assumption of small perturbation, the method requries the assumption that

the reflection data reside in the high frequency regime, in a well-defimed

A Y
sSCnse 7 |
,/’////;;o method is based on the derivation of an integrsl equation for the

perturbation in soundspeed from a known zeferemce speed. Vhen the reference
speed is comstant, the integral eguation admits an analytic solutiom as a
sultifold integral of the reflection data. Further high frequency
asymptotic amalysis simplifies this integral comsiderably and leasds to aa
oxtremely eofficient nmmerical slgorithm for computing the relfectivity
feaction. Ia a paper by Bleistein, Cohes and Hagin (1984], the development
of s computer code to isplement this ocoamstaat referemce speed solstion is !

dosezibed.
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1. INTRODUCTION

The purpose of this paper is to describe an extension of the Born
inversion technique [Cohen and Bleistein, 1979al]. In that paper, s method
was developed to determine the perturbation in soundspeed from a known
reference speed. A closed form solution was derived when the reference
speed was taken to be constant. In this extension, we allow the reference
speed to be a function of the depth variable z, but we require that it be
independent of the transverse variables (laterally bhomogeneous). The
perturbation is allowed to be a function of all three spatial variables when
s planar survey on the upper surface is available, it is allowed to be =
function of one transverse variable and depth when only a line of surface
data is available. Ve shall refer to this latter case of three dimensional
propagstion over am earth with two dimensional variations as the two !25'

one-half dimensional case;s we shall refer to the former as the three

dimensional case. In both cases, the surface observations we use are

backscattered (OMP stacked) time logs.

Let us denmote the soundspeed by v(x,y.z). We introduce the reference

speed, ¢, asd s perturbation, a, in the form

i'-L.u”.) (1)
v [}

The main features of the method are as follows:

(1) The method starts from the wave equation and a monlinear integral

equatios for a(x.y.s) is derived. The equation is nonlisear
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(ii)

(iii)

(iv)

becaunse it contains the product of the perturbation and the

unknown interior wave field.

Linearization, under the assumption that a is "small,” leads to an
integral equation for a in which the data are the ensemble of
backscatter (coincident source-receiver) observations on the upper
surface. The kernel of the integral equation is the square of a
Green's function for the unperturbed problem with referemnce speed

c(z).

For constant ¢, the integral equation admits a closed form
solution for a as a multi-fold integral of the observed data
[Cohen and Bleistein, 1979]. Asymptotic analysis [Bleistein,
Cohen and Hagin, 1984, referred to as BCH, below] reduces the
number of integrations which must be performed by compater so that
the processing times are competitive with, or better than, times
for existing migration codes. (See Gray, ([1984].) For depth-
dependent ¢, the integral equation admits an approximate
(asymptotic) solution, again as a multi-fold integral of the data.
As with the case of constant ¢, asymptotic analysis greatly

simplifies the computer implementation.

The computer implementation takes account of the fact that real
seismic data is bandlimited in frequency. The method also employs
constraints which account for camvsality and avoid aliasing in the

transverse.

The output of this method is s high frequenocy bandlimited reflectivity
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function of the subsurface. The reflectivity fuaction is aa array of

bandlimited singular fuactiops scsled by the mormal imcidence reflection

strength. Each singular function is s Dirac delts function of a scalsr

srgument which measures distamce mormal to a reflecting interface; see Fig.

1.

In characterizing this data as high frequemcy data we mean that the

dimensionless parameter -

A = 4xfl/c

should be large. In this equation, f is the miaimwm frequemcy ia Hz, ¢ is
the local soundspeed aand L is a typical lemgth scale. There is aa oaxtrs
factor of 2 in this equation duwe to the twvo—way travel time of iaterest in
iaverse problems; alterastively, ¢/2 may be viewed as the “migration
velocity” for s problem where sources are set off at eack reflector at time
zero. The leagth scales of imterest are the ramge from the wpper surface to
the reflecting surface, the primcipal radii of curvature of the reflector or
the distance betveen reflectors. For the first two of these, a lower limit
of 500m is reasomadle. Let us eomsider a lower limit of frequemcy of 6 Hz
and a soundspeed of 2000 m/sec. For this choice, A = 6x is muekh larger thaa
aecessary for high frequesey asymptotic methods to bde valid. Ia fact, a
valus of three (or =) will ussally suffice. Thus, evea aan imcrease of
veloeity by & fastor of 5 or a deerease ia leagth scale by the same¢ smoust
wonld leave ) lacge emough for asymptotic methods to apply. Usfortumately,

small offset seismic data do not usmally ssppost zesolutioa of layers whose
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separation is such as to make A less than three, whether or not we eoxploit

high frequency techniques to invert the data.

The method has been checked on synthetic data in the two and-one-half
dimensional case. The output of this imversion algorithm is a depth profile
equivalent to ome produced by a depth migration. The added feature of
inversion is that the amplitude of the output provides an estimate of the
velocity increments across the interfaces. The accuracy of this estimate
can be no better than the accuracy of the input data as relative true
amplitude data. However, in BCH, we show theoretically, using asymptotic
analysis, that for true amplitude data the output provides a more accurate
estimate of reflection stremgth at interfaces than its basis in perturbation
theory would suggest. In the absence of true amplitudes, the output is
fully equivalent to the output of a migration algorithm, In BCH, we discuss
the relationship between inversion of both k—f migration iStolt. 1978] and
Kirchhoff migration [Schmeider, 1978]. In order to distinguish the case in
which parameter estimation is possible from the case in which it is not, we

shall refer to the former as & seismic inversion and the 1latter as a

structural inversion. Thus, from our point of view, migration is a

structural imversionm technique.

For a depth dependent reference speed, c(z), we canmot invert the
linearized integrsl equation exactly for a. We cannot even write down anm
exact snalytical expression for the kernmel of the integral equation, which
is proportionsl to the square of a Green’s function for the wave operstor
with soundspeed o(z). However, we can write down an asymptotic (high

frequency) approximation for this Green's function and an asymptotic
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inversion of the integral equstion for alx,y,z). Indeed, fundamental to
this extension is early exploitation of ssymptotics on the basis of high
frequency in full anticipation of obtaining a solution only in the high
frequency regime and only for the bandlimited reflectivity function. (This
is much in the spirit of Clayton and Stolt [1981]1). Whem the data is not
relative true amplitude data, we 1lose only the estimate of reflection
strength and this seismic inversion method remains a structural imversiom

method, now in the context of a depth dependent background soundspeed.

The computer implementation of this result is designed along the same
general lines as the constant reference speed algorithm described in BCH.
To obtain the output at s subsurface point, it is necessary to take the
temporal Fourier transform of the range normalized data, multiply by s
filter deduced by the theory, iavert the traansform, evaluate each trace st a
traveltime deduced from the theory with an appropriate amplitude scale, and
integrate over a set of traces. In the constant referemce speed case, the
traveltime and amplitude scales of the 1last integration are explicit
functions of the integration point and the output poiant. In the o(z)
referonce speed case, these latter functions are replaced by the geometrical
optics traveltime and an amplitude on the ray comnecting the subsurface
output point amd the source/receiver point im the comtext of the depth
dependent reference profile. These functions are givea implicitly in terms
of a (zay) parameter which remains constant on a ray amd is determimed from
the equation of the ray coanmecting the two poiats. Ve arbditrarily
characterize the referemce speed in this implementation as beiag piecewise
linear and ocomtinuons, ocoanecting prescribed values of soundspeed at

prescrided depths in the subssrface. (For structural imversios, we oosld
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just as easily prescribe the reference velocity to be piecewise constant.
For seismic inversion, the piecewise constant background would required a
more complicated amplitude in the inversion operator.) We compute the ray
parameter and the necessary functions in advance asnd retain them in tables

to be called as needed for the final integration of the algorithm.

Becanse these tables need only be computed once for each output depth
(i.e., for each transverse offset separating output point and
source/receiver location), the computing time for this part of the
processing becomes a progressively smaller fraction of the total processing
time as the aspect ratio — the number of traces divided by the number of
output points — becomes larger. In tests of processing time we find that,
at worst, the total processing time for this algorithm with depth dependent
background velocity is about the same as for a comparably programmed k-f
slgorithm with constant background velocity. By worst. we mean that we
choose both the number of traces and the number of points per trace to be a
power of two aud we choose the aspoct ratio — number of traces divided by

number of points per trace — to be optimal for the k—-f algorithm.

Because of its implementation, described above, the method bears close
relationship to ome described by Carter and Frazer [1984]. The chief
difference between them, other than algorithmic details, are: (1) Carter
and Frazer’s methods sllows for transverse variations in c while ours does
oty (2) our method allows for processing of true-smplitude data for

reflection strength and hence velocity while Carter and Frazer's does mot.

Ve present synthetic dats exzamples which demonstrate the method




implemented as a structural inversion (migration) techaique. For the
simplest example of a single steeply tilted reflector, we compare this
method with output of a k-f algorithm applied to a time-stretched version of
the same data and to a Kirchhoff migration. Ve also present two examples in
which the objective is to image the flanks of a salt dome intruding into an
otherwise horizontally stratified medium, The advantages of the method of

this type of application are evident from the output.




2. DERIVATION OF THE INTEGRAL BQUATION FOR ALPEA

We shall derive an integral equation for a. We assume that the time-—

reduced wavefield u(z, ®) is a solution of the Helmboltz equation

3
Vi 4+ u=-8(x-2) 8y -n 8(2) . (2)
v

In this equation, V? is the Laplace operator and 8§ is the Dirac delta
function. This equation is to hold for all (x,y.,z). It is further assumed

that

L,"—l;(l'*u) , 220, a =alx,y,2), ¢ = c(z2) s

v (]
(3)
1 1
— .2(0.
v o)

The funaction c¢(z) is the known coantinuous referemce velocity aad
a{x,y,2) is the unknown perturbatiom to be determined from observations om

the upper surface.

We iatroduce ny: the solution of the uaperturbded Helmholts equation

e St ae T e A o
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3
Vi +% 0 =8z -0 8y -n) 8(x) . 0}
¢

The functioa 8y is often referred to as the “"incident wave.” Then we

may write

w=u tug (Sa)
3 “’ .’ + ] “
v ‘S+:'s-u8.-:-a-ahl wl. (%)

Let us suppose that a is small. Heuristically, simce the
*source term” -(w?/c*)au in equatiomn (5b) is O(a)., we expect that the
solation ug is as well. Thus as s first approximation, we may meglect the
product aug on the right side as being quadratic in a and hemce of lower

order tham the product auy. Consequently, the limearized equatioa for ug is

V’ns*:—:us---'-'?nl . (6)

Ve shall now write down the Greea’s fuactioa represeamtation for the

solstion ug evalmated back st the source poiats this is the backscatter

zosponse which is assumed to be the observed data. Ve remark that, from

(2), the Green’s fumotion is just uy itself, and the represeatation for wg



is

ns(t.n.O:o) - ldx ldy [dz ﬂ-:—'-L'l?- n;(x.y,ut.lhow) . 7
¢ (z)
- - 0

In this equation, we lhave used the fact that a is nonzero for z ¢ 0 to
integrate oaly over positive z values. Also, we have exhibited both sets of
spatial arguments of u; to emphasize its dependence upon both observation
snd integration coordinates. This is the integral equation for as it is the

fizst term in the Born series for ug. We propose to solve this integral

oquation im the high frequency rogime.

-10~




3. ANALYSIS OF THE INTRGRAL BQUATION FOR ALPHA

An exact analytical inversion of Eq. (7) for a is not genmerslly

| available unless ¢ is constant. Thus, we must content ourselves with am
approximate solution which retains features of interest of the true velocity

profile. As discussed in the introduction, we shall develop & high

frequency solution for the reflectivity fumction under the assumption of s

piecewise constant a.

We envision an inversion algorithm which, for output a(x,y,z), will be
in the form of an integratiom over a set of trasces whose tramsverse limits
define some bounded interval about the transverse coordinate of the output
or observation point - a Kirchhoff integral. Toward this end, we shall be
content to replace uy in (7) with & high frequency bandlimited spproximation
of that functiom for which the transverse offset is bounded. This
approximation is the downward propagating WKB or geometrical optics

spproximate solutiom.

, In Appendix A we derive such a solution as a Fourier iategral. The
% result is
L |
- 1 dn, du, exp {(ip°(x - §) + ig(z,yr0)}
ll(x.y.ne.n.om)-- > . (8
n71 ‘p.?:..li) u.(U.g:ui
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In this equation, we have introduced the following notatiom:

E=(xy), 4 =(u,on,), ¢ =sgne ru.(:'.gu) az' ,

0 (9)

3
i "-"‘+””

e I

We do not concern ourselves here with the values of y for which the
square root is zero or imaginary. The former case corresponds to rays at
their turning point,; the latter case corresponds to evanescent waves. Ve
justify the first of these by the observation that, in our iaversios
formula, we shall artificially limit the range of transverse variables to
preclude the turmed rays, thus limiting the amount of dip which cas be
imaged to vertical, at most. Ve justify the latter by moting that, im faot,

a is the Fourier inversion of its spatial transform over real wave vectors.

By using this represeatstion for uwy in (9), we obtaia the followiag

approximate integral equation for a:

'l
!




3 a(z,z)
dx dy | d:z

ue(f,0sm) =
8 4(2:)‘ c'(:)
‘ 0

du, du, expliy*(z - §) + ig(z,ys0))
lu,(z.nw) u,ﬂf.gw)

. ar, da, explid-(x - L) + ig(z,)sw))
‘Il,(t.Lw) uT(ﬁjLuﬂ

In this equation, we have omitted limits of integration except for the lower
limit in 2. We take the point of view that the limits of integratiom ia all
integrals is the range of values that allows the square roots inm the

integrand to remain real.

Eq. (10) is the integral equation which we shall invert ia the mext
section. We note that Bq. (10) is a "high frequency” approximation to Eq.
(7)., which is itself a "small a” spproximation to the exact expressioa for
ug(i.m.05w). Vo also mote that we shsll isvert ia Eq. (10) oaly iz ea
ssymptotic semse. The validity of osr ocascade of approzimatioms will be

domonstrated by the awmerical examples.




4. ASYNFIOTIC INVERSION OF THE INTRGRAL BQUATION

We 3shall now describe the (asymptotic) inversion of the inmtegral !
equation (10). To begin, we introduce the spatial Fourier tramsfors of ug

with respect to § defined by

U (k,0s0) = l dag dn ns(g.oxa) exp(~-2ik-t} , k = (k‘.k’) . (11)

)

Bv taking this Fourier transform in (10) we obtain the following equationm:

[ [ ]
_— , o . a(x,z)
k,0i0) = —— dx dy | dz
8 162" ¢’ (2)
Y - 0

dp, dp, expliy-x + ig(z,yrw)}
. (12)

Jﬁ.(z.unuffu'(o.g:u)

Pdl‘ ar, expli)-g + ig(z,)0))
. 8(2k + ) +u) .
F. (z 'L’“y ]l' (O.Lﬁ)

In this result, we have used the faot that

.- z"-
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la: dn expl-ik-2) = (2m)° 8(f)

-

PUREEFIE &

The delta fumctios ia (12) mov allows us to calculate the integral in A,

it

(Ve could as essily mse it to caloumlate the integral in y.) The result is

]
0w »2—lazs | &y | x| an, | an, 82X orp(-aipey)
16x ¢ (z)

(13) ‘
exp(ilp(z,ysw) + ¢(2,2k + yre)l}

‘u,(z.umTu.(O.gw) u,(2.2k + y1e) @ _(0,2k + gre)

We shall calculate the B integral by the method of statiomary phase
(Bleistein, 1984]. The large parameter in this integral is again the high
frequency, although that is mot apparent in the given representation. It
would become apparent if we were to scale y and k by lel and scale the depth ‘
by the depth to the first reflector. Then we would find the dimensioaless
depth to the first reflector, measured in wave leagths, omerging as a scale
on the phase of the p integration and this would be the dimensionless large
pazameter. Vs do not do this, dut proveed formally fo use the method of
stationazy phase directly om the iategral (13). This is carried omt ia
Appendix B, The resslt h ' i




TN s g s

(-]
ore) ° dz A(k,z) exp (2ig(z,krw) )
Ue(k,O0s0) = . (14)
= T8ni
s M@ b, k) b (0,530 a(z,k50)
0
In this equation,
1/2
dz’ dz’
o(z,k3w) = . (15)
Hy (2° kre) ) n:(z'.;su)
0 0

When c(z) is replaced by a comstant, the exponent in the integrand in

(14) is simply ik,z, with

The integrand also simplifies sigaificantly im this case. Ome thea
recognizes (14) as an equation for the Fourier tnnfoﬁ with respect to 2
of 4. The inversiom of this tramsform to yield u is them straightforward.
Awsreness of this faet ssggests an inversiom which, at least asymptotically,

has the same offect whea ¢ varies with dopth. Thus, we define




4’k du Y_(k.030) exp(-2ig({,ksw) + 2ik-2)
wig. ) = 284 s - : (16)
n u, (L. k1) sgn @

We 1look uponm w as the result of applying sn integral operator to the

(Fourier transformed) data in (14). By applying the same operator to the

right side of (14), we find that

w de

1
-(;.D-n—, dx | dy |4z | dk | ak | 3., u, L.k

—- Y= Jo
(17)
a(x,2) exp(2ilg(z.krw) - o({,k1w)] + 21k+(E - 3)}
) #,{(z,ks0) 5, (0,k1w) o(z,krw)

For the case of constant ¢, the integratioms om the right side ocam be

carrioed out explicitly to yield the result

w(g.D =ocalz.D/ a2, =T wiz.D/e . (18)

Thus st least for comstant ¢, we see that the multifold integration oa the
dats represented by w is in fact a multiple of a; that is, (16) and (18)

provide a solstioa for a.

Our objective now is to carry out the istegratioms ia (17) for the ease

of variable o. Agsin, we 60 90 by uasing the method of statiomary phase,

s bl i e Vs N
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this time in the four variables k and 3. The remaining integrals in w and 2

then become straightforward. This analysis is carried out in Appendix C.

The result is

c() c¢(0) a(g,0)
witg, D = , (19)

tcz z
[o (z) ¢

which provides the solution for a:

¢ R¢ t
a(g, D ‘;—;ng—?(-ay lc(z) dz . (20)
0

In order to write the solution for a in terms of the data observed at
the upper surface, we use this result and the definition of w in (16) along
with the definition of ¥ in (11) and the definition of the time transform

which placed us in frequency domain to begin with. The result is

rcz 2 ® a
a(g.t)-m,[" il l‘““["“'[“l"’l"r“
n (D) ¢(0) . 0

) us‘!aoot) exp{21fk°(2 -~ z) - sgn » jg B, (z,k10) dz] + jet)

(21)

sgn w p (f, K1)

- 18 -~
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In this equation, we bave used the notatiom Us to denote the upward

scattered field in the time domaisn.

As montioned in the introductiom, we do not process the data to yield «

itself, but to produce the reflectivity function or normal derivative of a,

at each of the interfaces between the layers of constant a. The theory
developed in Cohen and Bleistein [1979b] shows that we cen processs for
da/dn by multiplying the integrand by -2iw/c({)» we can obtain B if,
instead,we multiply by -iw/20({) before inverting. This is also discussed
in BCH and in Bleistein [1984]. Thus, we introduce the reflectivity
function P(Z,0), obtained by multiplying the integrand im (21) by this

factor. That is,

pz.h = 8'[5“‘)“ ]'dk‘]dk'luduldxldy],dt m’
— 0

x* (D) c(0) .

(22)

t
us‘!.o.t) oxp(2ilk*(: - x) ~sgn » IO n, (z,kr0) dz] + iet)

sgn @ K, ( r.;w)

In practice, an areal array of dats, as is required for this formula,
is sot usually available; only a 1line of datas at the wupper surface is !
available, say in the direction of the x axis of our formulation. Ia order
to treat this type of dats, it is asswmed that there is mo variatioa ia
; velooity in the orthogomsl horizontal direction, namely the y directica. Ia
' that case, the dats itself must be y-independent. This allows us to oarry

out the integrations in y and k,. The former of these ylelds x B(k,) and

the latter istegration thea yields a value of = while also evaluatiag the
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integrand st k, = 0. Consequeatly, we may replace k, by k in the integrand
and write down the followimg result for the reflectivity fumction ia the

case of y independence:

8 c(z) ds
’(tvb = -!g dk
x ¢ (D a(0)

w de | dx | dt
- "0

(23)

o
. us(!-out) expf2i[ k(¢ - x) - sgnuj‘op,(z.kw) dz] + et}

sgnep, (2.kr0)

Although B is assumed only to have two dimensional varisbility in this

result, the wave field has three dimensional spreading properties. Thus,

this is the formunla for the tﬁ_o and one-half dimemsional case. Ve remark

that a fully two dimensional formalism (govermed by a two dimensional wave
oequation) would not properly account for the “"geometrical spreading® of a

throe dimensional enviromment ss this two and ome-half dimensional result

does.

For the case of comstaat o, we osa compare this formula to the result
in Cohea and Bleistein [1979a). TRis comparison is sufficiently complicsted
to carry out that we do s0 in Appendix D. To leadiag order asymptotically,
they do, indeed, agres.

Also for comstaat ¢, (23) has the form of a k-f migration integral. Ia

fast, when eompared to Stolt [1978), equation (50), we find that we must

e e = et e - =



(i) interpret Stolt’'s ¢ 43 tUg(x,0,t) and (ii) imtegrate by parts with
respect to w as is dome in Appendix D of this paper. Then the integrals are
the same to leading order asymptotically for large @ up to a multiplicative
constant. Since the Stolt k-f formula is migrating the field and we are
producing B, this difference of a multiplier causes no difficulty. BEHowever,
except for such constant multipliers, it is mecessary that the integral
processing agree, at least to leading order in w, because both methods
produce an image of the interfaces between layers. Only the interpretatioa

of the intensity of the imaging function differs in the two methods.




T Ty

5. ASTNFIOTIC REDUCTION TO A CONPUTER INFLEMENTAMLE FPORNULA

The formula (23) is not easily implemented om the computer.
Furthermore, in that formula, we have not fully exploited the possible
simplifications available under the assumption of "high frequemcy.” To
achieve this ead, there is still one integration which cam be ocarried out
ssymptotically, namely, the integration in k, the tramsverse wave number.
This ocslculation is carried out in Appendix E. The result of that

caloculation is

32 oc(:) dz dx
BL.D = - —x
x o(0) S |- s(t.p)
f
. ‘II.' de exp(~2iwx(p,]) + i(sgnw)x/4} (24)

]
. ns(x.O.t) expliet)}at

t §

)
I!‘ﬂ'r —--i‘—'-—-g g(t.,)._%_m_ a (z) az

(23)

r 172
] ’
sty = | | ainde ], 2t g0
(a () ~p) ¢ (z)
In these equations, the iategrand is stated parametrically with parameter
P. This is a dimensionless ray parameter whiok demotes the sime of the

omergensde sagle with respest to the vertical of s reflected ray. (This




usage is a departure from the usage in the t-p method where this parameter

is divided by c(0) but is also denoted by p.) For each choice of 'x -t
and {, we must determinme the value of p from the first equation in (25).
Given p, the values of tv({,p) and S({,p) are then determined, as well as the
explicit square root asppearing in the integrand. The choice of t determines
8 “time” at which the processed time logs (CDP stacked traces) are to be
evaluated. “Processed” means Fourier transformed in time, multiplied by a
function of w and inverse Fourier transformed. The range of integration in
space is restricted to those values of x for which the square roots of the
integrand remain real and nonzero and the travel time t remaining less than

the maximum time om the set of traces.

Equations (24) and (25) are to be implemented on the computer. Ia
anticipation of this, we have written our result in terms of n(z), the iadex
of refraction, which is a number varying typically between .25 and 4, rather
than in terms of the inverse velocity or slowness, which is three orders of
magnitude smaller, with similar estimates true for the corresponding

parameter p. The computer implementation proceeds as follows:
(i) Calculate the Fourier time transform of esch traoce.
(ii) Multiply by a function of the frequemoy variable, perform
filtering as required and take the inverse Fourier transform.

This inverse transform is now gives on 3 uniform grid in time.

(111) PFor fized ostpst depth [, develop a table of values of p as »

fenotion of |z - §| (tzransverse offset between outpat poiat (3.0)




| and receiver location (x,0)) for the prescribed referemce velocity

t o(z). Ve use a table hers because the same choices of these
varisbles arise repeatedly in carrying out the spatial integration

t for different output points at the givenm depths.

(iv) VWith the p values determined, develop tables of the other

functions of p, namely t and 8 in Eq. (25), as well.

(v) Now for fixed (C.f). calculate the spatial integral as a discrete
sum over the locations x of the traces, subject to the limits of
summation noted above. Typically, the value of t at a given
choice of x, & and [ will not be available in the table of
processed data determined im (ii). Therefore, Uuse an
interpolation scheme to estimate the value of the processed data
at v in terms of the processed data at the grid points of the time

varisble.

The integration in @ is to be carried out over the available baadwidth
of the data. The Fourier tramsform should mot simply be truncated at the
endpoints of the bandwidth, but a smoothing filter should be applied to ;

avoid ringing of the output due to a discontinuous filter.

The spstial integration must also be further conmstraised by sampliag

— e e

zate comsiderations associated with the discreteness of data in the spatial
domain. If this is sot dome, spatial alissiag will occwr and will be
appaszeat iz the ostput. The requiremeat which we impose is that the

i tzansverse compoment of the wave vector ia the phase of the x iategral must

fw




be bounded by the tranverse spastial Nyquist frequency associated with the

sampling rate or spacing of the traces, as discussed next.

Let us denote the trsce separation in the transverse by Ax. The
transverse wave vector can be determined from the phase 2et dy calculating
the partial derivative of that function with respect to x. This derivative
is equal to the quotient of derivatives of 2wt and lx - ¢ — with v end

Ix - tl defined in (25) — with respect to p at fixed {. That is,

be b3

20-3;--
=
(26)
= 20-3%57

Ve introdsce the frequency im Hz, f = w/2xn, and require that the traasverse

wave asmber satisfy our Nygquist bomad evemn for the mazimwm frequemcy, say

£ . Then
+

2.2% £, » 2
O amed 7 @n

which leads to the coadition




PiTT, & (28)

This is the additional comstraint on p which, in turn, imposes an additionmal

constraint on the limits of integration (summationm) in x.

The next gumestion which arises is how to estimate the "jump” in a at an
ianterface in terms of the reflectivity, f. This is discussed in Cohen and
Bleistein {1979b) and Bleistein [1984]) for the case of a ®box" filter. Let
us defime Ac as the increment in a at such an interface and P as the peak
value of P at an interface location on an output trace. The theory then

predicts that

c(zx)

Aa =P - . (29)

+ -

Ia this equation, f_ is the minimum frequency.
For a more gemeral filter, we must replace the difference of

frequencies by the area under the filter fumctions, that is, if A demotes

the asres uader the filter, then

M"T . (30)




Finally, there is some post-processing possible to oompemsate partially
for the linearity of the uaderlying theory. This work was reported ia Hagin
and Cohen [1984]. Ve guote here the results of ome important post-—process

and refer the reader to that paper for further detail.

In ordexr to obtain am estimste of the velocity imocremeat ascross an

interface, one uses the linearized estimate deduced from (1),

Ac.‘t = ~1/2 ¢(z) Aa . (31)

Heore, Ac.‘t denotes the estimate obtained mumerically. Hagin aad Cohen then

suggest ss an improved estimate of the velocity incremeat

2¢(x) Ac.'t
4o " 3o(3) - Ac . (s2)
ost

We remark that all such post-processiag refinemeants are only wvorthwhile
if the original dsta is such that there is reason to believe that at least
relative true amplitude was preserved. Vhea this is aot the ocase, such

post-processing is umsecessary. Implemestatioa of (24) asd (25) still mey

be employed to yield a structural iaversion or migratioa of the time logs.
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Ve shall now discuss CPU time for the implementation of the five steps

l1isted in the previous section. Let us define the following:

N The number of points in the transverse at which the output is to be

calculated.

Nt The number of points in depth at which the output is to be calculated.
N The mumber of time points oa each input trace.
N The sumber of traces.

It should bde noted here that, ia practice., "t is smaller than Nt. The
reason for this is that the sampling rate determines a Nyguist frequency
which is uwsually larger than the maxzimum frequency of usable data. Thus,
theze 1s a 1imit to the resolution of the output based upon this maximum

usable frequency aad sot oa the samplisg rate.

Ia our reseazch, we have eoncluded that the demsity of the output meed
be 30 greater thaa to prodwce four poiats om the maia lobe of the
bandlimited delta fumctions which are being depicted. In Appeadix F, this
snslysis is discussed. VWhen those results are implemented with numbers
typicsl of geophysieal exploration data, we comclude that a typical vaime
for the zatio ll'Ill' is .56,




Implementation of each step of the previous section is estimated as

follows:

Step (1) O(Nx Nt lo;z Nt) to compute the Fourier transforms.

Step (ii) O(Nx Nt) to multiply all of the transforms by a fuaction of
frequency and then as in Step (i) to imvert the Fourier
transform.

Step (iii) O(N Nt) to develop the table of p values.

b 4
Step (iv) As in Step (iii).
Step (v) O(Ng Ntn;) to caloulate the fimal imtegral for the output.

In Step (v), we use N’ to connote that, in fact, the aperture over which the
integral is to be caloulated is a fractiom of the total number of traces -

on average, perhaps ome-half,

Steps (iii) amd (iv) are computations which need mot be performed in
the case of comstant c. We note that the "0” estimate for each of thess
steps cas be sigaificastly smaller tham or comparable to the estimate for

’
Step (v). This is 0 because ll‘ might bo as large as N, aad l'lx may be o

¢

small fractiom of N_ or, at most, equal to N

¢ ¢
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7. EKIANFLES

Vo use three numerical examples both to illustrate the preceding theory
and to demonstrate the differences bdetween it and other migration methods.
The first example is relatively simple; it will be used to provide a
comparison of imaging methods. The second and third are more complicated

sad realistie.

Fig. 2(s) shows a synthetic time section from s dipping planar structure
in a region where the velocity varies limearly with depth, the dip angle is

60 degrees and the velocity functiom is

c(z) = (5000 + 4z2) ft/sec. (33)

The trace spacimg is 50 ft. VWith c(z) taken as the referemce velocity, the
reconstruction as descridbed in Section 5 is shown in Fig. 2(b). The time
ssction has been oorrectly migrated; the spparent loss of high frequency
conteat im the migration is due to imposing the comstraint (28). For
comparison, we show in Fig. 2(c) the results of & Kirchhoff migration of the
ssme time soction. Straight ray paths were assumed for this migration, and
the traveltimes for diffraction curves were computed by using the s
velocity (coaverted from a function of time to a function of depth), as
discussed by Schmeider (1978). From this extreme example, which features a
steeply dipping event aad large background velocity variations, ome ocan
essily see the advantsges of computing traveltimes alomg the ocurved ray
poths defined implicitly in EBq. (25). The Kirchhoff output is incorrectly
placed sad the plansr reflector 1is depicted as & ocurved surfaoce.

Additionslly, a k-f migration was performed on this data after "stretching”




the time axis ([Stolt, 1979). This migration was totslly unmsuccessful in
imaging the reflector. This is because, after the time axis was strotched,

the reflection event on the resulting time section had an appareat dip

greater than 45 degrees, making the migration equation

sin(migrated dip) = tan(apparent dip) (34)

meaningless.

The second example (Fig. 3) shows a salt dome in a medium whose
layering is otherwise mearly horizontal. Because the objective is to image
the flanks of the salt dome and not its interior, migration with a reference
velocity which varies with depth only is appropriate. Fig. 3(a) shows the
model and Fig. 3(b) shows a finite-difference time section from the model.
Part of the salt dome is overhung: its dip exceeds 90 degrees. The model
velocity varies from 6000 ft/sec at the top of the model to 16000 ft/sec at
the bottoms it is piecewise constant. The trace spacing is 100 ft. The
reconstruction in Fig. 3(c) shows the correct imaging of dips uwp to, dut not
beyoad, vertical. For a comparison with a reverse-time fiamite differenmce
migration (Whitmore 1978], see Fig. 3(d) from Whitmore [1983]. The finite
difference migratiom ocorrectly images dips exceeding vertioal, bdut its

implementation is consideradly more time-comsuming than the approach studied

here. e
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The third example also consists of a salt dome in a medium whose
layeriang is otherwise nearly bhorizomtal. The model is shown in Fig. 4(a), ‘
slong with selected ray paths from reflecting interfaces to the upper i
surface. The model velocity varies from 5250 ft/sec at the top of the model
to 14100 ft/sec at the bottom, and the trace spacing is 25 ft. Ve note that
the ray paths are piecewise straight line segments, indicating that the
model comsists of piecewise constant-velocity layers, contrary to our
specification of a coantinuouws, piecewise linear, depth dependent velocity
layeriag. Nevertheless, the migration (Fig. 4(b)) was successful. The most

notable errors are:

(1) The inaccurats mapping of the interface directly below the salt dome.
This ocourred because the acoustic velocity of the salt is higher than
that of the sediments, leading to reduced traveltimes for reflectiom
events whose rays have travelled large distances through the salt. The

one-dimensional referemce velocity failed to account for this fact.

(2) The appearance of diffraction smiles on the migrated section. These
aze dus to the artificial trumcation of reflected energy on the time
seotiony that is, the time section does not contain diffraction
offects. This is, therefore, s limitation of the synthetic time dats

and ot of the migration. Im fact, any migratioa method will correctly

interpret those trumcated eveants as nmearly ocircslar reflector
continsations. Finmslly, Fig. 4(d) shows the effects of modifying the
anti-spatial-aliasing constraint (28). With the 4 in the denominmator e
roplaced by B, spatial asliasing is further 1limited alomg with the
ability to image the most steeply-dipping events (which appear om Fig. '
4(a) ss those most 1ikely to be alissed).




Computer run times for these and other experiments indicate that the :“g

%

2

speed of this algorithm is about the same as that of a comparsbly coded }iﬁ

.
(FORTRAN) k-f migration routinme.
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We lhave eoxteanded the multidimensional Bora imversion formslism snd
algorithm to the ocase vwhere the knowa referemce velocity, from which
perturbations are to be computed, are a functioa of depth. The amalytical
rosult has made use of a linearization (small perturbations from the
roforence velooity) and a high frequemcy asswmption (that seismic dats are
frequency baasdlimited, with even the lowest available frequemcies coasidered
to be "high" for the problem at hand). The reduction to an implementable
algorithm has made further suse of the high frequemcy sssumption, resmlting

ia an officient structural iaversioa method.
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APPENDIX A: ASYNPTUTIC DOWNGOING SOLUTION

The purpose of this appendix is to derive the asymptotic downgoing
solution, (8), to equation (5). We begin by introducing the spatial Fourier

transform of the solution, defimed by

U(p,z230) = I uwi(x,z,0) exp{-iu'x) dx dy, p = (ux.u’) (A-1)

By applying this Fourier transform to equation (5), we obtain the following

ordinary differential equation for the function u:

3
4% 3
;—;-+ u, ¥ = -8(z) exp(-ip-§) .
z (A-2)
g’ 3 3 3 s b’
“a‘"u’“)- -, . k. ® ‘"a+"s<_-s_ y
¢ (z) ¢ (2)

We have only defined B, for the ranges of its variables which make it resl,
and we shall only concern outselves with the asymptotic solutioa ia that

range as well.

Asymptotic theory for ordimary differeatial equations — see for
example Coddington and Levinson (1955] -- imdicates that two limearly
independent solutions to the homogensous form of (A2) are givea

asymptotically by

N ———




s, expltig(zre) -i p-3)
¥, ~— » § = sgn @ p.(z'.g:u) dz’ (A-3)

+
- Jn'z:.g:us

0

In this equation, s, are constants. The solutionm i+ is outgoing for z e
and the solution ¥ is outgoing for z —-=. Since (5) is homogeneous for 1z

nonzero, we conclude that

b ﬁ+. tl >0 » (A-‘)

with only the constants a+ to be determinped.

In order to determine thse constants, we must impose two conditions st
z = 0, those conditions characterizing the distributional mature of the
source. The conditions are that the function itself must be contimuous aad
the first derivative of the function must have & “jump” equal to the
integral of the right side on an interval containing the origiam inm 3. These

two equations are

r T (A~$)

after a divisiom of commom factors. The sum of these equations ylelds s,

i
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which is the oaly coanstant of imterest im our further discussion.

iaversion then yields equstion (8).

Fourler
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AFFENDIX B: ASTIFIOTIC EXPANRSION OF (13)

The purpose of this appeadix is to dezive the result (14), which is
the asymptotic expansion of the p—imtegral iam (13). We shall begia bde
reminding the reader of the basic multi-dimensionsl stationary phase

formula. For a derivation, see Bleistein [1984), for example.

Let us swppose that I(A) is s multi-fold integral of the form

I(d) = [1(;) oxp (1A¥(k)) dk ---dk . (B~1)
D

In this equation, D denotes some domain ia k - space. The imtegral (13) is
of this form in the varisbles k with a = 2. Ia s subsequeat appeadiz, we
shall have meed of this result with a = 4. Our iateamtion is to state the
formulas for the leadiag term of the asymptotic expasmsioa of this iamtegral
for "large” values of the parameter, A. As eoxplained im the text, wo lave
sot recast the integral is s form im which A is expliocit. Therefore, we

shall spply the formsls below with A = 1,

Let us ssppose that, ia D, 1_:° is the omly simple statiomary poiat,
that is,

Vi) -0 . (3-2)

bet the matzix with olements
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2’%(x )

!ij -—Ei?g? o 1,5 =1,00¢,0n , (B-3)

is nonsingular. Then, the leading term of the asymptotic expansiomn of the
integral (B-1) is

2n n/2 f(so)
I(A) ~ e oxp (iAE(k ) + ix(sga ‘i )/4) . (B-4)
det -o )
13

In this equation, sgn ,ij is the signature of the matrix !1 The signature

j.
is the number of positive eigeavalues minus the number of negative
eigenvalues of the matrix. If the domain D has more statiomary points, ome

simply adds up the comtributions from each of them.

Let us now consider the integral (13) and set
() = sgn wlglz,piw) + 9(2,2k + prw)) , A (B-5)

with ¢ defimed by (9). Differeamtiation with respect to p yields the

following resslts:

—”-
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2k, +
a8 _ ki TS !
-0;; TTsme [p,?z'.gw) * n,(z',2k + g:uT] ' . (B-6)
0
——!:!——~- ~sgam 8 1 + 1
u, Ouj s _ ij n.(z'.g:dT n.(:'.zg + pso) ]
0
(B~7)
- (2k, + w2k, + ¢) |
+ 1§ + i i F S dz’ .
Y2 e Y(2°.2k + prw)
k(2% pre k(2'.2k + s ]

In these equations, both imdices take on the values 1 and 2 and 8“ denotes

the khoek.t delta fumction.

The phase has s statiomary poiat when "1 = - ki' i - 1,2. The value

of the phase at the statiomary point provides the phase in the integral in

(14). Furzthermore,

oxp(-ix(sgaw)/2 _ 1
lof ™

(B-9)

and arrive at (14).
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In this appendix, we shall derive the result (19) from the integral
(17). To do this, we shall first calculate the leading term of the
asymptotic expansion of the fourfold integral in the variables k and x. Inm
order to implement the stationary phase formula (B-4), we think of the

latter two variables as being k. and k..

Let us define the phase to be analyzed to be

¢ = 2(sgn ) lzn'(z'.gso) dz’ + 2k-(& - x) . (C-1)

¥

We take the derivative of this phase function:

k

) i
3%; = -2 (sgn w) ;:-dz' +2(3, -x)), i1=12 ,
{ (c-2)

% . -
sq 2k‘. i 1.2 .

The comditions that the phase be stationary yield the solution
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Kk, =0, x =§, i=12 . (c-3)

We must now calculate the matrix of second derivatives at the
stationary point. This is greatly facilitated by employing (C-3) in the
calculation process to disregard contributions which are zero at the

stationary point. We find that at the stationmary point,

..=8¢," -%rc(z') dz* .
¢

(C-4)
!n = !u !u ‘u =2,
with all other terms being zero. For this mstrix, we find that
det !ij = 16, sgn !ij =0 (C-$)
and
ds’
E=20 rrm . (C-6)
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Wo now use the stationary phase formula (B-4) and find that

a({.() exp{2inm j‘ dz’'/c(z’))
wig. D) = o )ﬂc(O) dz l de { . c-7

c(z) Iz c{z') az'
0 0

The w integration can now be carried out to yield

a(f,z) G[I; dz'/c(z')]

w(l.2) = c(]) c(0) | az . (c-8)
c(z) 11 c(z’) dz’
0 0

We now apply to (C8) the rule,

]m(zn o(z) gz = 2D (c-9)
£ (H |

with { being the omly (simple) zero of f(z) in the domaim of iategratiom.

This yields the result (19).




APPENDIX D: COMPARISON WITR RARLIER RESULTY

In this appendix we shall discuss the comparison of (23) with the
corresponding result from Cohen and Bleistein [1979a]. In the latter. the
formula for a, in the two and one~half dimensional case, is stated in
equations (9) and (10). Ve quote that result with changes in notatiom to
correspond to the notation here: we must interchange the roles of x, ¢ and

2, {. The formula for a them becomes

8ic’
c(t.t)--;°—- dax | ax | x a ar | 4t

(p-1)
it - t) Ug(x,0,t) expl2ilk (3 - x) - k{1 + dwe} .

In this equation,

® = csgn t‘ Ix: + x: . (b-2)

Ve shall now simplify the time domain imtegrals. To begia, let us
define

L AR EEARL . € el

s




h 4
I = Idt dte(t - t) U, (x,0,t) expliet) . (D-3)
o 7o §

In this integral, we wish to interchange the order of integration. In doing
80, we take the point of view that @ has a positive imaginary part. Indeed,
there is justification for this. The original problem was "causal;” that
is, the experiments were carried out starting from some finite time. Thus,
the Fourier transform to frequency domain is originally defined and amalytic ;
in some upper half w-plane. Before anmalytically continuing the transform
down to the real axis, the interchange is justified. After carryinmg out the

interchange, we obtained
[ [_J
I = I dat Us(x.o.t) I v dv(v - t) expliwt} . (D-4)
0 t

We now calculate the t integral by integrating by parts and keeping

the leading order term in w for large |u|. The result is

) | --1; I dt t Us(x.o.t) exp(int]) ., (b-3)
0

which we ¢can also write as




-1 I at U (x,0,t) expliet] . (0-6)

iw 0

We substitute this result into (D~1) and also introduce the change of

variable of integration from k’ to w via the equation
'k, =sgno oy’ . (p-17)

and obtain

att.) =8 [ar [ax, £ epr2atr, (g - 0 - k.01
(D-8)

. .g.; I us(x,o,t) exp(int} dt .
0

The theory developed in Cohen and Bleisvein [1979a] indicates that we
obtain the reflectivity function by multiplying the integrand by 2iw/c,

which yields the following result:

pa.py - 208D _ 368 fas [ax, | awompraate, ¢ - 0 - 1,f1)

(D-9)

. fﬁ I Ug(x,0,t) explint) dt .

As integration by parts in w now yields the result

}
M
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p(z.D = -ﬂ,{ dx | ak, "’k"“' exp(2ilk (¢ - x) ~ x {1}
ne 3

(D-10)

. I dt Us(x.o.t) explint} dt
0

When (23) is specialized to the case of constant ¢, the result is exactly

the same as (D-10) when one makes the idemtification s

B, sgn ® =k . (b-11)

Mbagdlasic A4 o trrrtad o e e raea ree s
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APPENDIX B: ASYNPTOTIC EXPANSION OF THE SOLUTION FPORNSLA

We shall describe here the asymptotic expansion by the method of
stationary phase of the integrsl with respect to k im (23). Ve begir by

rewriting that inegrsl as

32 | c(z)dz
0

—————— | Ju)de | ax ] 4t U (z,0,¢)
ne® (Dec(0) §

B(E.D = -

(E-1)
. | 9k exp(2i8 + iwt])
n.(z.kli) *
In this equation,
§
¢ =k(F -1x)- l;nu[ u’(z.kxu) dz. (B-2)
0

To calculate this integral by the method of stationary phase, we need the

first and second derivatives of the phase function. They are given by

r
-:%-g-g+k.'l.l-;‘—(%-’m (E-3)
0

and




28 _ dz ) (E-4)

an’ c’(z)u:(z.kw)
0

The condition that the phase be stationary, that is, that 3§/3k = 0, is

{
dz
£ -¢ =k sgnow . (E-5)
s u,zz.kw’
0
We set
k = %—- psgan (x - ¢) (E-6)
[

and then (E-5) is just the ray equation, which is the first equation in

(25). Furtbhermore, at the stationmary point,

p,(z,k,0) -% J a*(z) - p’ , & =wlp,] ,

)
1—5 = c(0) e S({.p) sgn .
dk

(E-7)

Substitution of these values and application of the statiomary phase formula

to (E-i) yields the result, (24), (2%3).
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APPENDIX F: SANFLING RATE OF OUTFUT IN DEFTE

We shall discuss here the gquestion of the sampling rate in depth of the
output of & seismic inversion algorithm. These considerations are not

peculiar to inversion) they apply to any similar imaging technigue.

Lot us comsider the final step of the integral process to image a
reflector. For simplicity we deal with the case of a horizontal reflector

in one spatial dimension. Then, the last integral to be performed is of the

form

I(z) = [.xpuam/claf . (F-1)
B

In this equation, the band B over which the integral is to be calculated is
a symmetric pair of intervals, (-f+, -£), (t_. f+). Calculating this
integral explicitly and using a trigonometric identity for the differemce of

sines of two angles yields the result

o cosl2n(f + £ )z/c) sinl2x(f - £ )a/¢)

I(‘) = T . (F"Z)

The zerces of this fumction mearest to the orxigia ocour whea the ocosine
factor in this equation is sero or when the srgumeat of the cosime factor is
®/2. The distamnce between these two zeroes is determimed by settimg the

azgument of the cosime equal to =n.

EITTC T INTPRp TR 7Y




On empirical grounds, we require that the sampling rate in depth be

such that there are four sample points in this interval. Therefore, if Az

is the sample interval,

(L, + £ ) 4Az
c

=8 3 (F-3)

or,

(]
Az = m (F-4)

Let us definme the maximum depth to be Z and the maxzimum time
corresponding to that depth, to be T. Then, neglecting the practical

aspects of processing to the maximum depth, we set

N, === 4at(f, + £ N, . (F-5)

For s sample rate of 4 ails and s useful frequemcy zamge of 5-30 Hz, we

obtain from (F6) the estimate, N'/Nt = 56,

-3 -
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FIGURR CAFTIONS
Figure 1. The bandlimited singular function of s surface.
Figure 2(a). Synthetic time section: dipping planar reflector in a medium
where the velocity increases linearly with depth, Dip angle is 60 degrees:
velocity is (S000 + 4x) ft/sec.

Figure 2(b). Depth section reconstructed via the Born procedure. The
reflector has been properly located.

Figure 2(c). Depth section reconstructed via Kirchhoff migration using rms
velocities. Because of errors im computing traveltimes for diffraction
carves, the result is & severe overmigration.

Figure 3(a). Salt dome model.

Figure 3(b). Synthetic time soction,

Figure 3(c). Reconstructed depth section. All dips up to 90 degrees have
beea properly migrated.

Figure 3(d) Output of ¥ritmore's reverse—time finite difference migration.
(With the permission of the author.)

Figure 4(a). 8Salt dome model with ray paths from one reflecting horizon.
Figure 4(b). Syathetic time section,
Figure 4(c). Reconstructed depthk sectionm.

Figure 4(d). Reconstructed depth sections, the anti-aliasing constraint (28)
has been modified.
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SECURITY CLASSIFICATION OF THIS PAGE m Dats m

The purpose of this paper is to describe am exteasion of the
multidimensionl Born inversion techamique [Cohea and Bleisteim, 1979a] for
scoustic waves. In that earlier work, a perturbation in referesmce
soundspeed was determined by assuming that the referemce or backgrouad speed
was constant. In this extension, we allow the referemce speed to be &
function of the depth variable, z, but still require thst it be independent
of the tramsverse variables. The output of this method is a high frequency,
bandlimited zeflectivity fumction of the subsurface. The refleotivity
fusction is an array of bandlimited singular functions scaled by the aormsl
reflection strength. Each singular functiom is a Dirac delta fuactioa of a
scalar argument which measures distance normal to . a reflectiag intexface.
Thus, the reflectivity fumction is an indicator map of subsurface reflectors

which is equivaleat to the map produced by migration. In additioa to the
assemption of small perturbation, the method requries the assmmption that
the reflection data reside in the high frequemcy regime, ia s well-defimed
sense.

The method is based on the derivation of am integral equatioa for the
perturbation iz soundspeed from a known referemce speed. Vhen the refesence
speed is comstanmt, the integral equation asdmits aa anmalytic solstioa as.
multifold iategral of the reflection data. Further. high  freguemo
asymptotic amalysis simplifies this integral ocoasiderably aad 1leads to
extremely eofficieat nwmerical algorithm for ocomputiag the relfectivit
fuaction. Ia a paper by Bleistein, Cohea and Hagia [1984], the developmen
of & computer code to implement this constamt referemce speed solution i
desorxibed.

Fozr s depth depeadeat reference speed, c(z), we can so loager imver

high frequenmoy approxzimation for the kermel of the imtegral equation asd a
asymptotio solatioa for the perturbation. The ocomputer implemeatation o
this result is designed slomg the same limes as the code for the. comstan
background case. Ia tests of processiag time, we fiad that, at wvorst, th
total processiang time for this algorithm with depth depeadeat backgro
soundspeed is about the same as for a comparably programmed k-f algorit
with coastant background. By worst we meaa that we choose the aspect rati
— the awmber of traces divided by the aumber of poiats per trace ~— to.b
optimal for the k-f algorithm., Ve present examples which demoastrate
nothod implemented as & migration techkaiqgue and compare with the applieati
of alterastive migratioan slgorithms. The examples we chose were omes
which the objestive is to image the flanks of a salt dome.
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the integral equatioa exzactly. However, we can write down an asymptotio




